MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

5070 CHEMISTRY

5070/21

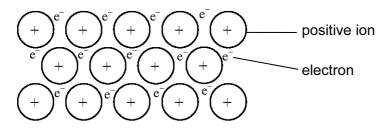
Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.


	Page 2			Syllabus	Paper
			GCE O LEVEL – October/November 2011	5070	21
			Section A		
A1	(a)	sulf	ur dioxide (1)		[1]
	(b)	pota	assium manganate(VII) (1)		[1]
	(c)	silve	er nitrate (1)		[1]
	(d)	nitro	ogen dioxide (1)		[1]
	(e)	Met	thane (1)		[1]
					[Total: 5]
A2	(a)	C₂H	H ₄ O (1)		[1]
	(b)	stru	icture shown or written as 2,8,2 (1)		[1]
l	(c)	(i)	any two of: floats/moves over surface (1) bubbles/effervescence (1) goes into a ball/melts (1) gets smaller/eventually forms a colourless solution (1) yellow/orange flame (1) IGNORE dissolves		[2]
		(ii)	$2Na(s) + 2H_2O(I) \rightarrow 2NaOH(aq) + H_2(g)$ correct formulae for reactants and products (1) balancing (dependent on correct formulae) (1) correct state symbols (dependent on correct products ar	nd reactants) (1)	
	(d)	(i)	iron has higher melting point/sodium has lower melting point and sodium low (1)	point/iron has high	melting [1]
		(ii)	iron has higher density/sodium has lower density/iron ha	as high density and	sodium [1]
					[Total: 9]

	Page 3			Mark Scheme: Teachers' version	Syllabus	Paper
				GCE O LEVEL – October/November 2011	5070	21
Α3	(a)	their ALL is th ALL		ng electrons (to from iodine)/oxidation number goes oxidation number/removing oxygen from hydrogen pe OW incorrect decreases or increases in oxidation number e correct direction OW H ₂ O ₂ is reduced/H ₂ O ₂ gains electrons ORE statements repeating what is in the equation ene	roxide (1) ber providing the	e change
				urless to brown (1) OW yellow/orange-brown/straw coloured		[1]
	(b)	 (b) potassium iodide: increase in concentration increases rate (1) sulfuric acid: no effect (1) 				[2]
	(c)	colli tem colli	icles sions perat sions	of: moving slower at lower temperature or have less ener s less effective at lower temperature/collisions les ture/ORA (1) s less frequent at lower temperature/ORA (1) rticles have energy greater than activation energy (1)		at lower [2]
	(d)	protons = 53 electrons = 54 neutrons = 74				
		all 3 correct (2) 1 or 2 correct (1)				[2]
						[Total: 8]

Page	4	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE O LEVEL – October/November 2011	5070	21
A4 (a) (i	ALL origi pign (cold	omatography <u>paper</u> dipping in <u>labelled</u> solvent (1) OW named solvents e.g. propanone/alcohol/water in line marked <u>above the solvent level</u> (1) nent spot on origin line at start and then separat pured) spots (1) narks can be obtained by writing or from a diagram	es into more ti	han one [3]
(ii	, if ch	chromatogram with known sample <u>and</u> the brown solut lorophyll present it will go up the paper same distanc same R _f value (1)	()	sample/ [2]
(b) (i)) cart	bon dioxide (+ water \rightarrow) glucose (+ oxygen) (1)		[1]
(ii	corre	$O - 2e^- \rightarrow 2H^+ + O_2/2H_2O \rightarrow 2H^+ + O_2 + 2e^-$ ect formulae (including electron) (1) ncing (1)		[2]
(c) (i) cont	ains (C=C) double bonds/can add more hydrogen (1)		[1]
(ii		nine decolourises/goes colourless (1) ORE: goes clear/colour fades/discolourises		[1]
(d) (i) C _n H	_{2n} (1)		[1]
(ii	Mus	structure of but-1-ene or but-2-ene drawn (1) t show all the atoms and all the bonds OW structure of 2 -methylpropene		[1]
(iii	ALL	steam/water above 100°C (1) OW hydrated above 100°C Freference to hydrolysis		
		lyst/phosphoric acid (1) OW H₃PO₄/H₂SO₄/H⁺		[2]
				[Total: 14]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2011	5070	21

A5 (a) (i) Positive ions in regular layers (1) positive ions can be shown as circles with + or labelled as ions NOT atoms electrons shown interspersed between the ions (1) electrons can be shown in diagram as e⁻/e or – or dots labelled electron [2]

- (ii) malleable: idea of layers sliding when force applied (1) conducts: electrons can move/the sea of electrons/the delocalised electrons/free electrons (1)
- (b) no free electrons/no mobile electrons/all electrons involved in bonding/no delocalised electrons/no sea of electrons (1) strong bonding throughout the whole structure/covalent bonding throughout the whole structure/idea of many strong bonds (1) NOT ionic bonds
- (c) $PdCl_{2}(1)$
- (d) in solid ions not free to move (1) when molten ions free to move (1) ALLOW ions only free to move when molten (2)

[2]

[1]

[Total: 9]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2011	5070	21

Section B

B6	(a)	do titration with (indicator) to find end point/do titration (with indicator) to find volume of acid or alkali needed to neutralise (1) titrate again without indicator using same volume as before (1) evaporate solution to crystallisation point/leave to form crystals (1) filter off crystals/pick out crystals and dry with filter paper (1)	[4]
	(b)	moles NaOH = $1.6 \times \frac{25}{1000}$ /0.04 mol (1) moles hydrates sodium sulfate = $\frac{0.04}{2}$ /0.02 (1) molar mass of sodium sulfate calculated = 322 (1) mass sodium sulfate = 0.02 × 322 = 6.44g (1)	[4]
	(c)	Anhydrous copper sulfate/white copper sulfate (1) turns (from white) to blue (1) OR Anhydrous cobalt chloride/blue cobalt chloride (1) turns (from blue) to pink (1)	[2]

[Total: 10]

	Page 7			Mark Scheme: Teachers' version	Syllabus	Paper
				GCE O LEVEL – October/November 2011	5070	21
B7	(a)	alco	ohol a	nd carboxylic acid (1)		[1]
	(b)			: $HOCH_2COONa + CO_2 + H_2O (1)$ g 2HOCH_2COOH and 2HOCH_2COONa (1)		[2]
	(c)			nas been removed from oxalic acid/hydrogen has been oxidation number of carbon decreases	added to oxalic	acid (1) [1]
	(d)	(i)	mad	densation polymer because water has been e)/monomer does not have a carbon-carbon double ned by condensation)/can be hydrolysed (1)	removed (whe bond/has este	
		(ii)	Poly	ester/named polyester (1)		[1]
	(e)	(i)	less sma less	two of: litter (1) Il mammals or birds not trapped or harmed (1) landfill (1) ALLOW less or no land pollution er poisonous fumes since not burnt (1)		[2]
		(ii)	any	suitable e.g. plastic bags (1)		[1]
		(iii)				
			ΔΗ	$ \begin{array}{cccc} CH_{3} & H \\ I & I \\ C & \longrightarrow C \\ I & I \\ H & H \\ OW CH_{3}CH=CH_{2} \end{array} $ (1)		[1]
						[Total: 10]

	Page 8			Mark Scheme: Teachers' version	Syllabus	Paper
				GCE O LEVEL – October/November 2011	5070	21
B 8	(a)	(i)		hoteric oxide because it react both with acids and base ts as both an acid and a base (1)	es/amphoteric be	ecause it [1]
		(ii)		D_3 + 2NaOH \rightarrow 2NaA lO_2 + H ₂ O (1) OW other equations making NaA $l(OH)_4$ or NaA $l(OH)_6$		[1]
		(iii) Filtration (1)				
	(b)	(i)	anoc corre	ode: $Al^{3+} + 3e^- \rightarrow Al(1)$ de: $2O^{2-} \rightarrow O_2 + 4e^-$ ect symbols and formulae including electron (1) ncing (1)		[3]
			bala			[0]
		(ii)	to di	ssolve the aluminium oxide/to lower the melting point o	of the mixture (1)	[1]
	alur IGN			two from: hinium (apparently) unreactive/does not corrode (1) ORE aluminium does not rust ause of oxide layer (1)		(4) [0]
			acid	in drink could react with iron/acid in drink doesn't reac	t with aluminium	(1) [2]
		(ii)	mixt	ure of metals or a metal with a non-metal (1)		[1]
						[Total: 10]
B9	(a)	(i)	0.2 >	× 24 = 4.8 dm³/4800 cm³ (unit needed) (1)		[1]
		(ii)	corre	ect 'dot-and-cross' diagram for HC <i>l</i> (1)		[1]
	(h)	Cal	=_ + H	$H_2SO_4 \rightarrow CaSO_4 + 2HF$		
	(6)	cor	rect fo	ormulae (1)		
		bala	ancing	g (1)		[2]
	(c)	pН		rong and HF is weak(ish)/HC <i>l</i> is stronger than HF (1) <i>I</i> = 1 (allow 0-2) and HF = 3–6/HC <i>l</i> has a lower pH than		
		or refe	erence	e to greater concentration of hydrogen ions in HC <i>l</i> tha	ın in HF (1)	[2]
	(d)	(i)		easing temperature: reaction goes to left/more reactant reasing conc of HI: reaction to the right/more HI forme	. ,	[2]
		(ii)		ses: H_2 = 0.8 (2 × 0.4), I_2 = 19.2 (254 × 0.0756) and H	HI = 172.0 (128	× 1.344)
			(1) % I ₂	= 19.2/(0.8 + 19.2 + 172) = 10 % (1)		[2]
	[Total:					
						[]